
www.manaraa.com

CWC: A high-performance conventional
authenticated encryption mode

Tadayoshi Kohno1, John Viega2, and Doug Whiting3

1 UC San Diego, tkohno@cs.ucsd.edu
2 Virginia Tech, viega@securesoftware.com

3 Hifn, Inc., dwhiting@hifn.com

Abstract. We introduce CWC, a new block cipher mode of operation
for protecting both the privacy and the authenticity of encapsulated
data. CWC is currently the only such mode having all five of the fol-
lowing properties: provable security, parallelizability, high performance
in hardware, high performance in software, and no intellectual property
concerns. We believe that having all five of these properties makes CWC
a powerful tool for use in many performance-critical cryptographic appli-
cations. CWC is also the only appropriate solution for some applications;
e.g., standardization bodies like the IETF and NIST prefer patent-free
modes, and CWC is the only such mode capable of processing data at
10Gbps in hardware, which will be important for future IPsec (and other)
network devices. As part of our design, we also introduce a new paralleliz-
able universal hash function optimized for performance in both hardware
and software.

Keywords: Authenticated encryption, modes of operation, parallelism,
performance, security proofs.

1 Introduction

An authenticated encryption associated data (AEAD) scheme is a symmetric
encryption scheme designed to protect both the privacy and the authenticity
of encapsulated data. There has recently been a strong push toward producing
block cipher-based AEAD schemes [13, 10, 12, 23, 27, 22, 5]. Despite this push,
among the previous works there does not exist any AEAD scheme simultane-
ously having all of the following properties: provable security, parallelizability,
high performance in hardware, high performance in software, and free from in-
tellectual property concerns. Even though not all applications will require all
five of the these properties, almost all applications will require at least one of
the them, and may very likely have to be able to interoperate with an applica-
tion requiring a different property. We thus view finding an appropriate scheme
having all five of these properties as a very important research goal.

Finding an appropriate balance between all five of the aforementioned prop-
erties is, however, not easy because the most natural approaches to addressing

www.manaraa.com

some of the properties are actually disadvantageous with respect to other prop-
erties. We believe we have overcome these challenges and, in doing so, introduce
a new mode of operation called CWC, or Carter-Wegman Counter mode.

Motivating example. One of the primary reasons for desiring such a block
cipher-based AEAD scheme is IPsec. From a pragmatic perspective, we note that
many vendors and standardization bodies prefer patent-free modes over patented
modes (the elegant OCB mode was apparently rejected from the IEEE 802.11
working group because of patent concerns). And, from a hardware performance
perspective, we note that because none of the existing patent-free AEAD schemes
are parallelizable, it to impossible to make existing patent-free AEAD schemes
run faster than about 2Gbps using conventional ASIC technology and a single
processing unit. Nevertheless, future network devices will be expected to run
at 10Gbps. CWC addresses these issues, being both patent-free and capable of
processing data at 10Gbps using conventional ASIC technology.

The CWC solution. Our new mode of operation, called CWC, has all five of
the properties mentioned above. It is provably secure. Moreover, our provable
security-based analyses helped guide our research and helped us reject other
schemes with similar performance properties but with slightly worse provable
security bounds. CWC is also parallelizable, which means that we can make
CWC-AES run at 10Gbps using conventional ASIC technology. CWC is also fast
in software. Our current implementation of CWC-AES runs at about the same
speed as the other patent-free modes on 32-bit architectures (Table 1), and we
anticipate significant performance gains on 32-bit CPUs when using more so-
phisticated implementation techniques (Section 6), and we also see significantly
better performance on 64-bit architectures. Of course, we do remark that the
patented modes like OCB are capable of running even faster in software, which
would make them very attractive were they not also encumbered in intellectual
property issues.

Like the other two unpatented block cipher-based AEAD modes, CCM [27]
and EAX [5], CWC avoids patents by making two passes on the data: one pass to
“encrypt” and one pass to “authenticate.” Adopting the terminology used in [5],
it is because of the two-pass nature of CWC that we call it a “conventional”
block cipher-based AEAD scheme. By using the conventional approach, CCM,
EAX, and CWC are very much like composition-based AEAD scheme [4, 15], or
AEAD schemes composed from existing encryption schemes and MACs. Unlike
composition-based AEAD schemes, however, by designing CWC directly from
a block cipher, we eliminate redundant steps and fine-tune CWC for efficiency,
again keeping in mind both our hardware and software goals. For example, we
use only one block cipher key, which saves expensive memory access in hardware.

The encryption core of CWC is essentially counter (CTR) mode encryption,
which is well-known to be efficient and parallelizable. Finding an appropriate al-
gorithm for the authentication core of CWC proved to be more of a challenge. For
authentication, we decided to base our design on the Carter-Wegman [26] uni-
versal hash function approach for message authentication. Part of the difficulty
in the design came down to choosing the right type of universal hash function,

www.manaraa.com

Linux/gcc-3.2.2 Windows 2000/Visual Studio 6.0
Payload message lengths (bytes) Payload message lengths (bytes)

Mode 128 256 512 2048 8192 128 256 512 2048 8192

CWC-AES 105.5 88.4 78.9 72.2 70.5 84.7 70.2 62.2 56.5 55.0
CCM-AES 97.9 87.1 82.0 78.0 77.1 64.8 56.7 52.5 49.5 48.7
EAX-AES 114.1 94.9 86.1 79.1 77.5 75.2 61.8 55.3 50.4 49.1

Table 1. Software performance (in clocks per byte) for the three patent-free block
cipher-based AEAD modes on a Pentium III. Values are averaged over 50 000 samples.

with the right parameters. Since polynomial evaluation can be parallelized (if
the polynomial is in x, one can split it into i polynomials in xi), we chose to use a
universal hash function consisting of evaluating a polynomial modulo the prime
2127 − 1. We note the our hash function is similar to Bernstein’s hash127 [6]
except that Bernstein’s hash function was optimized for software performance
at the expense of hardware performance. To address this issue, we use larger co-
efficients than Bernstein uses. We believe our hardware- and software-optimized
universal hash function to be of independent interest.

Notation. As part of our research, we first created a general approach for com-
bining CTR mode encryption with a universal hash function in order to provide
authenticated encryption. We shall refer to this general approach as CWC (note
no change in font), and shall use CWC-BC to refer to a CWC instantiation with
a 128-bit block cipher BC as the underlying block cipher and with the univer-
sal hash function described briefly above. We shall use CWC as shorthand for
CWC-BC and use CWC-AES to mean CWC-BC with AES [8] as the underlying
block cipher. Other instantiations of the general CWC approach are possible,
e.g., for legacy 64-bit block ciphers. Since we are primarily targeting new appli-
cations, and since a mode using a 128-bit block cipher will never be asked to
interoperate with a mode using a 64-bit block cipher, we focus this paper only
on our 128-bit CWC instantiation.

When we say that an AEAD scheme’s encryption algorithm takes a pair
(A,M) as input and produces a ciphertext as output, we mean that the AEAD
scheme is designed to protect the privacy of M and the authenticity of both A
and M . This will be made more formal in the body.

Performance. Let (A,M) be some input to the CWC encryption algorithm.
The CWC encryption algorithm derives a universal hash subkey from the block
cipher key. Assuming that the universal hash subkey is maintained across in-
vocations, encrypting (A,M) takes d|M |/128e + 2 block cipher invocations.
The polynomial used in CWC’s universal hashing step will have degree d =
d|A|/96e+d|M |/96e. There are several ways to evaluate this polynomial (details
in Section 6). As noted above, we could evaluate it in parallel. Serially, assuming
no precomputation, we could evaluate this polynomial using d 127x127-bit multi-
plies. As another example, assuming n precomputed powers of the hash subkey,
which are cheap to maintain in software for reasonable n, we could evaluate

www.manaraa.com

the polynomial using d−m 96x127-bit multiplies and m 127x127-bit multiplies,
where m = d(d + 1)/ne − 1.

In hardware using conventional ASIC technology at 0.13 micron, it takes
approximately 300 Kgates to reach 10 Gbps throughput for CWC-AES. This is
around twice as much as OCB, but avoids IP negotiation overhead and roy-
alty payments to three parties. Table 1 relates the software performance, on
a Pentium III, of CWC-AES to the two other patent-free AEAD modes CCM
and EAX; the patented modes such as OCB are not included in this table,
but are about twice as fast as the times given for the patent-free modes. The
implementations used to compute Table 1 were written in C by Brian Glad-
man [9] and all use 128-bit AES keys; the current CWC-AES implementation
does not use the above-mentioned precomputation approach for evaluating the
polynomial. Table 1 shows that the current implementations of the three modes
have comparable performance in software, the relative “best” depending on the
OS/compiler and the length of the message. Using the above-mentioned precom-
putation approach and switching to assembly, we anticipate reducing the cost of
CWC’s universal hashing step to around 8 cpb, thereby significantly improving
the performance of CWC-AES in software compared to CCM-AES and EAX-
AES (since the authentication portions of CCM-AES and EAX-AES are limited
by the speed of AES but the authentication portion of CWC-AES is limited by
the speed of the universal hash function). For comparison, Bernstein’s related
hash127, which also evaluates a polynomial modulo 2127 − 1 but whose specific
structure makes it less attractive in hardware, runs around 4 cpb on a Pentium
III when written in assembly and using the precomputation approach. On 64-bit
G5s, our initial implementation of the hash function runs at around 6 cpb, thus
showing that CWC-AES is very attractive on 64-bit architectures (when running
the G5 in 32-bit mode, our implementation runs at around 15 cpb).

We do not claim that CWC-AES will be particularly efficient on low-end
CPUs such as 8-bit smartcards. However, our goal was not to develop an AEAD
scheme for such low-end processors.

The patent issue. The patent issue is a very peculiar one. While it may ini-
tially sound odd to let patents influence research, we note that it is also not
uncommon, especially in other sciences. Indeed, we view this line of research as
discovering the most appropriate solution given real-world constraints. And, just
like performance constraints, intellectual property constraints are very real.

Background and related work. The notion of an authenticated encryp-
tion (AE) scheme was formalized by Katz and Yung [13] and by Bellare and
Namprempre [4] and the notion of an authenticated encryption with associated
data (AEAD) scheme was formalized by Rogaway [22]. Bellare and Namprem-
pre [4] and Krawczyk [15] explored ways to combine standard encryption schemes
with MACs to achieve authenticated encryption. A number of dedicated AE and
AEAD schemes also exist, including RPC [13], XECB [10], IAPM [12], OCB [23],
CCM [27], and EAX [5]. CWC is similar to the combination of McGrew’s UST [20]
and TMMH [19], where one of the main advantages of CWC over UST+TMMH
is CWC’s small key size, which, as the author of UST and TMMH noted, can be

www.manaraa.com

a bottleneck for UST+TMMH in hardware at high speeds. The integrity por-
tion of CWC builds on top of the Carter-Wegman universal hashing approach
to message authentication [26]. The specific hash function CWC uses is similar
to Bernstein’s hash127 [6], but is better suited for hardware. Shoup [25] and
Nevelsteen and Preneel [21] also worked on software optimizations for universal
hash functions. Rogaway and Wagner released a critique of CCM [24]. For each
issue raised in [24], we find that we have addressed the issue (e.g., we designed
CWC to be on-line) or we disagree with the issue (e.g., we feel that it is suffi-
cient for new modes of operation to handle arbitrary octet-length, as opposed
to arbitrary bit-length, messages; we stress, however, that, if desired, it is easy
to modify CWC to handle arbitrary bit-length messages, see Section 5).

2 Preliminaries

Notation. If x is a string then |x| denotes its length in bits. Let ε denote the
empty string. If x and y are two equal-length strings, then x⊕y denotes the xor
of x and y. If x and y are strings, then x‖y denotes their concatenation. If N is
a non-negative integer and l is an integer such that 0 ≤ N < 2l, then tostr(N, l)
denotes the encoding of N as an l-bit string in big-endian format. If x is a
string, then toint(x) denotes the integer corresponding to string x in big-endian
format (the most significant bit is not interpreted as a sign bit). For example,
toint(10000010) = 27 + 2 = 130. If b is a bit and n a non-negative integer, then
bn denote b concatenated with itself n times; e.g., 107 is the string 10000000.
Let x ← y denote the assignment of y to x. If X is a set, let x

$← X denote the
process of uniformly selecting at random an element from X and assigning it to
x. If f is a randomized algorithm, let x

$← f(y) denote the process of running f
with input y and a uniformly selected random tape. When we refer to the time
of an algorithm or experiment, we include the size of the code (in some fixed
encoding). There is also an implicit big-O surrounding all such time references.

Authenticated encryption schemes with associated data. We use Ro-
gaway’s notion of an authenticated encryption with associated data (AEAD)
scheme or mode [22]. An AEAD scheme SE = (Ke, E ,D) consists of three
algorithms and is defined over some key space KeySpSE , some nonce space
NonceSpSE = {0, 1}n, n a positive integer, some associated data (header) space
AdSpSE ⊆ {0, 1}∗, and some payload message space MsgSpSE ⊆ {0, 1}∗. We
require that membership in MsgSpSE and AdSpSE can be efficiently tested and
that if M,M ′ are two strings such that M ∈ MsgSpSE and |M ′| = |M |, then
M ′ ∈ MsgSpSE .

The randomized key generation algorithm Ke returns a key K ∈ KeySpSE ; we
denote this process as K

$← Ke. The deterministic encryption algorithm E takes
as input a key K ∈ KeySpSE , a nonce N ∈ NonceSpSE , a header (or associated
data) A ∈ AdSpSE , and a payload message M ∈ MsgSpSE , and returns a cipher-
text C ∈ {0, 1}∗; we denote this process as C ← EN,A

K (M) or C ← EK(N, A,M).
The deterministic decryption algorithm D takes as input a key K ∈ KeySpSE ,

www.manaraa.com

a nonce N ∈ NonceSpSE , a header A ∈ AdSpSE , and a string C ∈ {0, 1}∗ and
outputs a message M ∈ MsgSpSE or the special symbol INVALID on error; we
denote this process as M ← DN,A

K (C). We require that DN,A
K (EN,A

K (M)) = M
for all K ∈ KeySpSE , N ∈ NonceSpSE , A ∈ AdSpSE , and M ∈ MsgSpSE . Let l(·)
denote the length function of SE ; i.e., for all keys K, nonces N , headers A, and
messages M , |EN,A

K (M)| = l(|M |).
Under the correct usage of an AEAD scheme, after a random key is selected,

the application should never invoke the encryption algorithm twice with the same
nonce value until a new key is randomly selected. In order to ensure that a nonce
does not repeat, implementations typically use nonces that contain counters. We
use the notion of a nonce, rather than simply a counter, because the notion of
a nonce is more general and allows the developer the freedom to structure the
nonce as he or she desires.

Block ciphers. A block cipher E : {0, 1}k × {0, 1}L → {0, 1}L is a function
from k-bit keys and L-bit blocks to L-bit blocks. We use EK(·), K ∈ {0, 1}k,
to denote the function E(K, ·) and we use f

$← E as short hand for K
$←

{0, 1}k ; f ← EK . Block ciphers are families of permutations; namely, for each
key K ∈ {0, 1}k, EK is a permutation on {0, 1}L. We call k the key length of E
and we call L the block length.

We adopt the notion of security for block ciphers introduced in [17] and
adopted for the concrete setting in [2]. Let E : {0, 1}k × {0, 1}L → {0, 1}L be a
block cipher and let Perm(L) denote the set of all permutations on {0, 1}L. Let
A be an adversary with access to an oracle and that returns a bit. Then

Advprp
F (A) = Pr

[
f

$← E : Af(·) = 1
]
− Pr

[
g

$← Perm(L) : Ag(·) = 1
]

denotes the prp-advantage of A in distinguishing a random instance of E from
a random permutation. Intuitively, we say that E is a secure prp, or a secure
block cipher, if the prp-advantages of all adversaries using reasonable resources
is small. Modern block ciphers, such as AES [8], are believed to be secure prps.

3 The CWC mode of operation

We now describe our new AEAD scheme. Let BC : {0, 1}kl × {0, 1}128 →
{0, 1}128 be a 128-bit block cipher. Let tl ≤ 128 is the desired tag length in bits.
Then the CWC mode of operation using BC with tag length tl, CWC-BC-tl =
(K, CWC-ENC, CWC-DEC), is defined as follows. The message spaces are:

MsgSpCWC-BC-tl = { x ∈ ({0, 1}8)∗ : |x| ≤ MaxMsgLen }
AdSpCWC-BC-tl = { x ∈ ({0, 1}8)∗ : |x| ≤ MaxAdLen }

KeySpCWC-BC-tl = {0, 1}kl

NonceSpCWC-BC-tl = {0, 1}88

where MaxMsgLen and MaxAdLen are both 128 · (232 − 1). That is, the payload
and associated data spaces for CWC-BC-tl consist of all strings of octets that are
at most 232 − 1 blocks long.

www.manaraa.com

The CWC-BC-tl key generation, encryption, and decryption algorithms are
defined as follows:

Algorithm K
K

$← {0, 1}kl

Return K

Algorithm CWC-ENCK(N, A, M)
σ ← CWC-CTRK(N, M)
τ ← CWC-MACK(N, A, σ)
Return σ‖τ

Algorithm CWC-DECK(N, A, C)
If |C| < tl then return INVALID
Parse C as σ‖τ where |τ | = tl
If A 6∈ AdSpCWC-BC-tl or σ 6∈ MsgSpCWC-BC-tl then

return INVALID
If τ 6= CWC-MACK(N, A, σ) then

return INVALID
M ← CWC-CTRK(N, σ)
Return M

The remaining algorithms (CWC-CTR, CWC-MAC, CWC-HASH) are defined be-
low. The CWC-CTR algorithm handles generating the encryption and decryption
keystreams, CWC-MAC handles the generation of an authentication tag, and uses
CWC-HASH as the underlying universal hash function.

Algorithm CWC-CTRK(N, M)
α ← d|M |/128e
For i = 1 to α do

si ← BCK(107‖N‖tostr(i, 32))
x ← first |M | bits of s1‖s2‖ · · · ‖sα

σ ← x⊕M
Return σ

Algorithm CWC-MACK(N, A, σ)
R ← BCK(CWC-HASHK(A, σ))
τ ← BCK(107‖N‖032)⊕R
Return first tl bits of τ

Algorithm CWC-HASHK(A, σ)
Z ← last 127 bits of BCK(110126)
Kh ← toint(Z)

l ← min int such that 96 divides |A‖0l|
l′ ← min int such that 96 divides |σ‖0l′ |
X ← A‖0l‖σ‖0l′ ; β ← |X|/96
Break X into chunks X1, X2, . . . , Xβ

For i = 1 to β do
Yi ← toint(Xi)

lσ ← |σ|/8 ; lA ← |A|/8
Yβ+1 ← 264 · lA + lσ
R ← Y1K

β
h + · · ·+ YβKh + Yβ+1

mod2127 − 1
Return tostr(R, 128)

4 Theorem statements

The CWC scheme is a provably secure AEAD scheme assuming that the under-
lying block cipher, e.g., AES, is a secure pseudorandom permutation. This is a
quite reasonable assumption since most modern block ciphers, including AES,
are believed to be pseudorandom. Furthermore, all provably-secure block cipher
modes of operation that we are aware of make at least the same assumptions
we make, and some modes, such as OCB [23], require the stronger, albeit still
reasonable, assumption of super-pseudorandomness.

The specific results for CWC appear as Theorem 1 and Theorem 2 below, and
are proven in the full version of this paper [14]. In [14] we also present results
for the general CWC construction, from which Theorems 1 and 2 follow.

4.1 Privacy

We first show that if BC is a secure block cipher, then CWC-BC-tl will preserve
privacy under chosen-plaintext attacks. For our notion of privacy for AEAD

www.manaraa.com

schemes, we use the strong definition of indistinguishability from [22]. Let SE =
(Ke, E ,D) be an AEAD scheme with length function l(·). Let $(·, ·, ·) be an oracle
that, on input (N,A, M) ∈ NonceSpSE × AdSpSE ×MsgSpSE , returns a random
string of length l(|M |). Let B be an adversary with access to an oracle and that
returns a bit. Then

Advpriv
SE (B) = Pr

[
K

$← Ke : BEK(·,·,·) = 1
]
− Pr

[
B$(·,·,·) = 1

]

is the ind$-cpa-advantage of B in breaking the privacy of SE under chosen-
plaintext attacks; i.e., Advpriv

SE (B) is the advantage of B in distinguishing be-
tween ciphertexts from EK(·, ·, ·) and random strings. An adversary B is nonce-
respecting if it never queries its oracle with the same nonce twice. Intuitively,
a scheme SE preserves privacy under chosen plaintext attacks if the ind$-cpa-
advantage of all nonce-respecting adversaries using reasonable resources is small.

Theorem 1. [Privacy of CWC.] Let CWC-BC-tl be as in Section 3. Then
given a nonce-respecting ind$-cpa adversary A against CWC-BC-tl one can con-
struct a prp adversary CA against BC such that if A makes at most q oracle
queries totaling at most µ bits of payload message data, then

Advpriv
CWC-BC-tl(A) ≤ Advprp

BC (CA) +
(µ/128 + 3q + 1)2

2129
. (1)

Furthermore, the experiment for CA takes the same time as the experiment for
A and CA makes at most µ/128 + 3q + 1 oracle queries.

Let us elaborate on why Theorem 1 implies that CWC-BC will preserve privacy
under chosen-plaintext attacks. Assume BC is a secure block cipher. This means
that Advprp

BC (C) must be small for all adversaries C using reasonable resources
and, in particular, this means that, for CA as described in the theorem state-
ment, Advprp

BC (CA) must be small assuming that A uses reasonable resources.
And if Advprp

BC (CA) is small and µ, q are small, then, because of the above equa-
tions, Advpriv

CWC-BC-tl(A) must also be small as well. I.e., any adversary A using
reasonable resources will only be able to break the privacy of CWC-BC-tl with
some small probability.

As a concrete example, let us consider limiting the number of applications of
CWC-BC-tl between rekeyings to some reasonable value such as q = 232, and let
us limit the total number of payload bits between rekeyings to µ = 250. Then
Equation 1 becomes

Advpriv
CWC-BC-tl(A) ≤ Advprp

BC (CA) +
1

242

which means that, assuming that the underlying block cipher is a secure prp,
an attacker will not be able to break the privacy of CWC-BC-tl with advantage
much greater than 2−42.

4.2 Integrity/authenticity

We now present our results showing that if BC is a secure block cipher, then
CWC-BC-tl will protect the authenticity of encapsulated data. We use the strong

www.manaraa.com

notion of authenticity for AEAD schemes from [22]. Let SE = (Ke, E ,D) be
an AEAD scheme. Let F be a forging adversary and consider an experiment
in which we first pick a random key K

$← Ke and then run F with oracle
access to EK(·, ·, ·). We say that F forges if F returns a pair (N, A, C) such that
DN,A

K (C) 6= INVALID but F did not make a query (N,A, M) to EK(·, ·, ·) that
resulted in a response C. Then

Advauth
SE (F) = Pr

[
K

$← Ke : F EK(·,·,·) forges
]

is the auth-advantage of F in breaking the integrity/authenticity of SE . Intu-
itively, the scheme SE preserves integrity/authenticity if the auth-advantage of
all nonce-respecting adversaries using reasonable resources is small.

Theorem 2. [Integrity/authenticity of CWC.] Let CWC-BC-tl be as speci-
fied in Section 3. (Recall that BC is a 128-bit block cipher and that the tag length
tl is ≤ 128.) Consider a nonce-respecting auth adversary A against CWC-BC-tl.
Assume the execution environment allows A to query its oracle with associated
data that are at most n ≤ MaxAdLen bits long and with messages that are at
most m ≤ MaxMsgLen bits long. Assume A makes at most q − 1 oracle queries
and the total length of all the payload data (both in these q − 1 oracle queries
and the forgery attempt) is at most µ. Then given A we can construct a prp
adversary CA against BC such that

Advauth
CWC-BC-tl(A) ≤ Advprp

BC (CA)+
(µ/128 + 3q + 1)2

2129
+

n + m

2133
+

1
2125

+
1
2tl

. (2)

Furthermore, the experiment for CA takes the same time as the experiment for
A and CA makes at most µ/128 + 3q + 1 oracle queries.

Let us elaborate on why Theorem 2 implies that CWC-BC will preserve authen-
ticity. Assume BC is a secure block cipher. This means that Advprp

BC (C) must
be small for all adversaries C using reasonable resources and, in particular, this
means that, for CA as described in the theorem statement, Advprp

BC (CA) must be
small assuming that A uses reasonable resources. And if Advprp

BC (CA) is small and
µ, q,m and n are small, then, because of the above equations, Advauth

CWC-BC-tl(A)
must also be small as well. I.e., any adversary A using reasonable resources will
only be able to break the authenticity of CWC-BC-tl with some small probability.

Let us consider some concrete examples. Let n = MaxAdLen and m =
MaxMsgLen, which is the maximum possible allowed by the CWC-BC construc-
tion. Then Equation 2 becomes

Advauth
CWC-BC-tl(A) ≤ Advprp

BC (CA) +
(µ/128 + 3q + 1)2

2129
+

1
293

+
1
2tl

.

If we set q = 232 and µ = 250 as before, and if we take tl ≥ 43, then the above
equation becomes

Advauth
CWC-BC-tl(A) ≤ Advprp

BC (CA) +
1

241

www.manaraa.com

which means that, assuming that the underlying block cipher is a secure prp,
an attacker will not be able to break the unforgeability of CWC-BC-tl with prob-
ability much greater than 2−41.

Remark 1. [Chosen-ciphertext privacy.] Since CWC-BC-tl preserves privacy
under chosen-plaintext attacks (Theorem 1) and provides integrity (Theorem 2)
assuming that BC is a secure pseudorandom permutation, it also provides privacy
under chosen-ciphertext attacks under the same assumption about BC. See [4, 22]
for a discussion of the relationship between chosen-plaintext privacy, integrity,
and chosen-ciphertext privacy; this relationship was also used, for example, by
the designers of OCB [23].

5 Design decisions

Finding an appropriate balance between provable security, hardware efficiency,
and software efficiency, while simultaneously avoiding existing intellectual prop-
erty issues, proved to be one the the biggest challenges of this research project. In
this section we discuss how our diverse set of goals affected our design decisions.

The CWC-HASH universal hash function. We found that the best way
to simultaneously achieve our parallelizability, hardware, and software goals was
to base the authentication portion of CWC on the Carter-Wegman [26] universal
hash function approach to message authentication. This is because universal
hash functions, and especially the one we created for CWC, can be implemented
in a multitude of ways, thus allowing different platforms and applications to
implement CWC-HASH in the way most appropriate for them. For example,
hardware implementations will like parallelize the computation of CWC-HASH
by splitting it into multiple polynomials in Ki

h for some i. In more detail, if the
polynomial is

Y1K
β
h + Y2K

β−1
h + Y3K

β−2
h + Y4K

β−3
h + · · ·+ YβKh + Yβ+1 mod 2127 − 1 .

then, setting i = 2, and y = K2
h mod 2127 − 1, and assuming β is odd for illus-

tration purposes, we can rewrite the above polynomial as(
Y1y

m + Y3y
m−1 + · · ·+ Yβ

)
x +

(
Y2y

m + Y4y
m−1 + · · ·+ Yβ+1

)
mod 2127 − 1 ,

After splitting the polynomial, hardware implementations will then likely com-
pute each polynomial using Horner’s rule (e.g., the polynomial aK2i

h + bKi
h + c

would be evaluated as (((a)Ki
h+b)Ki

h)+c). Software implementations on modern
CPUs, for which memory is cheap, will likely precompute a number of powers of
Kh and evaluate the CWC-HASH polynomial directly, or almost directly, using
a hybrid between a precomputation approach and Horner’s rule. We consider a
number of possible implementation strategies in more detail in Section 6.

CWC-HASH is an instantiation of the classic polynomial universal hash ap-
proach to message authentication [26], and is closely related to Bernstein’s
hash127 [6], which also evaluates a polynomial modulo 2127−1. Although hash127
is very fast in software, its structure makes it less suitable for use on high-speed

www.manaraa.com

hardware. In particular, Bernstein’s choice of 32-bit coefficients, while great for
software implementations with precomputed powers of Kh, means that hard-
ware implementations using Horner’s rule will be “wasting work.” Specifically,
even with 32-bit coefficients, incorporating each new coefficient using Horner’s
rule will require a 127x127-bit multiply because the accumulated value will be
127 bits long. By defining the CWC-HASH coefficients to be 96-bits long, we
increase the performance of Horner’s rule implementations by a factor of three.
(Of course, we could have gone even further and made the coefficients 126 bits
long, but doing so would have required considerable additional complexity to
perform bit and byte shifting within the coefficients.) An alternative approach
for increasing the performance of a serial implementation of Horner’s rule would
be to reduce the size of the CWC-HASH subkey Kh to 96 bits. We discuss why
we rejected this option in more detail later, but remark here that there are al-
ready more efficient strategies than Horner’s rule for implementing CWC-HASH
in software, and that in a parallelized approach the values Ki

h, i ≥ 2, will most
often be full 127-bit values even if Kh is only 96-bits long.

On using a single key. From a security perspective, it would have been per-
fectly acceptable, and in fact more traditional, to make the CWC-CTR block
cipher key and the two CWC-MAC block cipher keys independent. Like oth-
ers [27, 5], however, we acknowledge that there are several important reasons for
sharing keys between the encryption and authentication portions of modes such
as CWC. One of the most important reasons is simplicity of key management.
Indeed, fetching key material can be a major bottleneck in high-speed hardware,
and minimizing key material is thus important. This fact is also why we de-
rive the hash subkey from the block cipher key rather than use an independent
hash subkey. We could, of course, have defined a mode that derived a number
of essentially independent block cipher and hash keys from a single block cipher
key, but doing so would either have required more memory or more computa-
tion and, because we have proofs that our construction works, would have been
unnecessary.

Sharing the block cipher key in the way described above and deriving the
hash subkey from the block cipher key did, however, mean that we had to be
very careful with our proofs of security. To facilitate our proofs, we took extra
care in our design to ensure that there would never be a collision in the plaintext
inputs to the block cipher between the different usages of the block cipher. For
example, by defining CWC-HASH to produce a 127-bit value as output, we know
that the first application of BC to CWC-HASHK(A, σ) in CWC-MAC will always
have its first bit set to 0. To avoid a collision with the input to the keystream
generator, the block cipher inputs in CWC-CTR always have the first two bits
set to 10. When using the block cipher to create the hash subkey Kh, the first
two bits of the input are set to 11.

On the choice of parameters. Part of this effort involved specifying the
appropriate parameters for the CWC encryption mode. Example parameters in-
clude the nonce length and the way the nonce is encoded in the input to the
block cipher. We chose to fix these parameters for interoperability purposes, but

www.manaraa.com

note that our general approach in [14] does not have theses parameters fixed.
We chose to set the nonce length to 88 bits in order to handle future IPsec
sequence numbers. And we chose to set the block counter length to 32 bits in
order to allow CWC to be used with IPsec jumbograms and other large packets.
We also chose to use big-endian byte ordering for consistency purposes and to
maintain compatibility with McGrew’s ICM Internet-Draft [18] and the IETF,
which strongly favors big-endian byte-ordering.

Handling arbitrary bit-length messages. Since we do not believe that
many applications will actually require the ability to encrypt arbitrary bit-length
messages, we do not define CWC to take arbitrary bit-length messages as input.
That said, we did design CWC in such a way that it will be easy to modify the
specification to take arbitrary bit-length messages without affecting interoper-
ability with existing implementations when octet-strings are communicated. For
example, one could augment the computation of Yβ+1 in CWC-HASH as follows:

rA ← |A| mod 8 ; rσ ← |σ| mod 8 ; Yβ+1 ← 2120 · rA + 2112 · rσ + 264 · lA + lσ .

Of course, a cleaner approach for handling arbitrary bit-length messages would
be to compute lA ← |A| and lσ ← |σ| in CWC-HASH. We do not define CWC
this way because we do not consider it a good trade-off to define a mode for
arbitrary bit-length messages at the expense of octet-oriented systems.

64-bit block ciphers. The reader might naturally ask why we did not define
CWC for use with block ciphers with 64-bit blocks. The answer is because we
are targeting future high-speed cryptographic applications. Nevertheless, we do
remark that the general CWC approach in [14] can be instantiated with 64-bit
block ciphers.

Some possible alternatives. Here we discuss some other possible alterna-
tives to CWC and why we rejected these alternatives. First, as noted earlier,
it is possible to improve the performance in some situations by using shorter
hash subkeys Kh, say of length 96 bits. Such an alternative will not increase
the performance in high-speed hardware implementations that will parallelize
the computation of CWC-HASH by evaluating a polynomial in (at least) K2

h. A
96-bit hash subkey would have increased Horner’s rule performance in software,
but would still be comparable in speed to a software-based approach using pre-
computed powers of Kh (see Section 6), so reducing the size of Kh to 96 bits
would not provide a significant advantage in software either. In [14] we also con-
sider what happens to our provable security bounds when the length of the hash
subkey is reduced to less than 96 bits.

There are a number of possible approaches for reducing the number of block
cipher applications in the CWC-MAC algorithm by one. For example, one could
use BCK(h′K(N, A, σ)) as the tag, where h′ is a modified version of CWC-HASH
designed to hash 3-tuples instead of pairs of strings. One could also use something
like BCK(N)+Y1K

β+2
h + · · ·+YβK3

h + lAK2
h + lσKh mod 2127 − 1 as the tag. In

[14] we consider these and other alternatives and discuss why we chose to define
CWC the way that we did instead of using an option with one fewer block cipher
invocation. In the case of the two alternatives mentioned in this paragraph, we

www.manaraa.com

note that we rejected them because we were able to prove better bounds on the
security of CWC as currently defined.

Motivated by EAX2 [5], one possible alternative to CWC might be to use
BCK(11105‖N) both as the value to encrypt R in CWC-MAC and as the initial
counter to CTR mode-encrypt M (with the first two bits of the counter always
set to 10). Other EAX2-motivated constructions also exist. For example, the
tag might be set to BCK(h(X0‖N))⊕ BCK(h(X1‖A))⊕ BCK(h(X2‖σ)), where
X0, X1, X2 are strings, none of which is a prefix of the other, and h is a paral-
lelizable universal hash function, like CWC-HASH but hashing only single strings
(as opposed to pairs of strings). Compared to CWC, these alternatives have the
ability to take longer nonces as input, and, from a functional perspective, can
be applied to strings up to 2126 blocks long. But we do not view this as a reason
to prefer these alternatives over CWC. From a practical perspective, we do not
foresee applications needing nonces longer than 11 octets, or needing to encrypt
messages longer than 232−1 blocks. Moreover, from a security perspective, appli-
cations should not encrypt too many packets between rekeyings, implying that
even 11 octet nonces are more than sufficient. We do comment, however, that we
believe the alternatives discussed in this paragraph are still more attractive than
EAX because, like CWC but unlike EAX, these alternatives are parallelizable.

We chose not to base the authentication portion of our new mode on XOR-
MAC [3] or PMAC [7] because of patent concerns and our software performance
requirements and we chose not to base the authentication portion on software-
efficient MACs such as HMAC [1] because of our hardware parallelizability re-
quirement.

6 Performance

Hardware. Since one of our main goals was to achieve high performance in
hardware and, in particular, to provide a solution for future 10 Gbps IPsec (and
other) network devices, let us focus first on hardware costs. As noted in the
introduction, using 0.13 micron CMOS ASIC technology, it should take approxi-
mately 300 Kgates to achieve 10 Gbps throughput for CWC-AES. This estimate,
which is applicable to AES with all key lengths, includes four AES counter-mode
encryption engines, each running at 200 MHz and requiring about 25Kgates each.
In addition, there are two 32x128-bit multiply/accumulate engines, each running
at 200 MHz with a latency of four clocks, one each for the even and odd polyno-
mial coefficients. Of course, simply keeping these engines “fed” may be quite a
feat in itself, but that is generally true of any 10 Gbps path. Also, there may well
be better methods to structure an implementation, depending on the particu-
lar ASIC vendor library and technology, but, regardless of the implementation
strategy, 10 Gbps is quite achievable because of the inherent parallelism of CWC.

Since OCB is CWC’s main competitor for high-speed environments, it is worth
comparing CWC with OCB instantiated with AES (we do not compare CWC with
CCM and EAX here since the latter two are not parallelizable). We first note that
CWC-AES saves some gates because we only have to implement AES encryption

www.manaraa.com

in hardware. However, at 10 Gbps, OCB still probably requires only about half
the silicon area of CWC-AES. The main question for many hardware designers is
thus whether the extra silicon area for CWC-AES costs more than three royalty
payments, as well as negotiation costs and overhead. With respect to negotiation
costs and royalty payments, we note that despite significant demands, to date the
relevant parties have not all offered publicly available IP fee schedules. Given
this fact, and given today’s silicon costs, we believe that the extra silicon for
CWC-AES is probably cheaper overall than the negotiation costs and IP fees
required for OCB.

Software. CWC-AES can also be implemented efficiently in software. Table 1
shows timing information for CWC-AES, as well as CCM-AES and EAX-AES,
on a 1.133GHz mobile Pentium III dual-booting RedHat Linux 9 (kernel 2.4.20-
8) and Windows 2000 SP2. The numbers in the table are the clocks per byte
for different message lengths averaged over 50 000 runs and include the entire
time for setting up (e.g., expanding the AES key-schedule) and encrypting. All
implementations were in C and written by Brian Gladman [9] and use 128-bit
AES keys. The Linux compiler was gcc version 3.2.2; the Windows compiler was
Visual Studio 6.0. To be fair, we note that OCB does run at about twice the
speeds given in Table 1.

From Table 1 we conclude that the three patent-free modes, as currently
implemented by Gladman, share similar software performances. The “best” per-
forming one appears to depend on OS/compiler and the length of the message
being processed. On Linux, it appears that CWC-AES performs slightly better
than EAX-AES for all message lengths that we tested, and better than CCM-
AES for the longer messages, whereas Gladman’s CCM-AES and EAX-AES
implementations slightly outperform his CWC-AES implementation on Windows
for all the message lengths that we tested.

Note, however, that all the implementations used to compute Table 1 were
written in C. Furthermore, the current CWC-AES code does not make use of
all of the optimization techniques (and in particular precomputation) that we
describe below. By switching to assembly and using the additional optimization
techniques, we anticipate the speed for CWC-HASH to drop to better than 8
clocks per byte, whereas the speed for the CBC-MAC portion of CCM-AES and
EAX-AES will be limited by the speed of AES (the best reported speed for AES
on a Pentium III is 14.1 cpb, due to a proprietary library by Helger Lipmaa;
Gladman’s free hand-optimized Windows assembly implementation runs at 17.5
cpb [16]). Returning to the speed of CWC-HASH, for reference we note that
Bernstein’s related hash127 [6] runs around 4 cpb on a Pentium III when written
in assembly and using the precomputation approach. Bernstein’s hash127 also
works by evaluating a polynomial modulo 2127−1; the main difference is that the
coefficients for hash127 are 32 bits long, whereas the coefficients for CWC-HASH
are 96 bits long (recall Section 5, which discusses why we use 96-bit coefficients).
We also note that the performance of CWC-HASH will increase dramatically on
64-bit architectures with larger multiplies; an initial implementation on a G5

www.manaraa.com

using 64-bit integer operations runs at around 6 cpb (when running the G5 in
32-bit mode, the hash function runs at around 15 cpb).

Since the implementation of CWC-HASH is more complicated than the im-
plementation of the CWC-CTR portion of CWC, we devote the rest of this section
to discussing CWC-HASH.

Precomputation. As noted in Section 5, there are two general approaches to
implementing CWC-HASH in software. The first is to use Horner’s rule. The
second is to evaluate the polynomial directly, which can be faster if one precom-
putes powers of the hash key Kh at setup time (here the powers of Kh can be
viewed as an expanded key-schedule). In particular, as noted in Section 5, eval-
uating the polynomial using Horner’s rule requires a 127x127-bit multiply for
each coefficient, whereas evaluating the polynomial directly using precomputed
powers of Kh requires a 96x127-bit multiply for each coefficient. (We discuss
elsewhere why we did not make the hash subkey 96-bits, which could have sped
up a serial Horner’s rule implementation.) The advantage with precomputation
was first observed by Bernstein in the context of hash127 [6].

The above description of the precomputation approach assumed that if the
polynomial is Y1K

γ−1
h +· · ·+Yγ−1Kh+Yγ (i.e., the polynomial has γ coefficients),

then we had precomputed the powers of Ki
h for all i ∈ {1, . . . , γ−1}. The precom-

putation approach extends naturally to the case where we have precomputed the
powers Kj

h, j ∈ {1, . . . , n}, for some n ≤ γ−1. For simplicity, first assume that we
know the polynomial has a multiple of n coefficients. For such a polynomial, one
processes the first n coefficients (to get Y1K

n−1
h +. . .+Yn−1Kh+Yn), then multi-

plies the intermediate result by Kn
h (to get Y1K

2n−1
h + . . .+Yn−1K

n+1
h +YnKn

h).
After that, one can continue processing data with the same precomputed values
(to get Y1K

2n−1
h + . . . + Y2n−1Kh + Y2n), and so on. Note that each chunk of n

coefficients takes (n− 1) 96x127-bit multiplies, and all but the last chunk takes
an additional 127x127-bit multiply. Now assume that the number of coefficients
m in the polynomial is not necessarily a multiple of n. If m is known in advance,
one could first process m mod n coefficients, multiply by Kn

h , then process in
n-coefficient chunks as before. Alternately, as long as the end of the message
is known n coefficients in advance, one could process n-coefficients chunks, and
then finish off the final m mod n coefficients using Horner’s rule. Or, if the num-
ber of coefficients in the polynomial is not known until the final coefficient is
reached, one could process the message in n-coefficient chunks and then mul-
tiply by a precomputed power of K−1

h once the end of the message hash been
reached.

Naturally, precomputation requires extra memory, but that is usually cheap
and plentiful in a software-based environment. Using 32-bit multiplies, the pre-
computation approach requires 12 32-bit multiplies per 96-bit coefficient, as well
as 17 adds, all of which may carry. In assembly, most of these carry operations
can be implemented for free, or close to it by using a special variant of the add
instruction that adds in the operand as well as the value of the carry from the
previous add operation. But when implemented in C, they will generally compile
to code that requires a conditional branch and an extra addition. An implemen-

www.manaraa.com

tation using Horner’s rule requires an additional four multiplies and three addi-
tions with carry per coefficient, adding about 33% overhead, since the multiplies
dominate the additions. A 64-bit platform only requires four multiplies and four
adds (which may all carry), no matter the implementation strategy taken, which
explains why implementations of CWC-HASH for 64-bit architectures are much
faster.

Exploiting the parallelism of some instruction sets. On most 32-bit
platforms, it turns out that the integer execution unit is not the fastest way
to implement CWC-HASH. Many platforms have multimedia instructions that
can be used to speed up the implementation. As another alternative, Bernstein
demonstrated that, on most platforms, the floating point unit can be used to
implement this class of universal hash functions far more efficiently than can be
done in the integer unit. This is particularly true on the x86 platform where,
in contrast to using the standard registers, two floating point multiples can
be started in close proximity without introducing a pipeline stall. That is, the
x86 can effectively perform two floating-point operations in parallel. The disad-
vantage of using floating-point registers is that the operands for the individual
multiplies need to be small, so that the operations can be done without loss
of precision. On the x86, Bernstein multiplies 24-bit values, allowing the sums
of product terms to fit into double precision values with 53 bits of precision
without loss of information. Bernstein details many ways to optimize this sort
of calculation in [6].

As noted before, there are only two main differences between the structure of
the polynomials of Bernstein’s hash127 and CWC-HASH. The first is that Bern-
stein uses signed coefficients, whereas CWC-HASH uses unsigned coefficients; this
should not have an impact on efficiency. The other difference is that Bernstein
uses 32-bit coefficients, whereas CWC-HASH uses 96-bit coefficients. While both
solutions average one multiplication per byte when using integer math, Bern-
stein’s solution requires only .75 additions per byte, whereas CWC-HASH requires
1.42 additions per byte, nearly twice as many. Using 32-bit multiplies to build
a 96x127 multiplier (assuming precomputation), CWC-HASH should therefore
perform no worse than at half the speed of hash127. When using 24-bit floating
point coefficients to build a multiply (without applying any non-obvious opti-
mizations), hash127 requires 12 multiplies and 16 adds per 32-bit word. CWC
can get by with 8 multiples per word and 12.67 additions per word. This is be-
cause a 96-bit coefficient fits exactly into four 24-bit values, meaning we can use
a 6x4 multiply for every three words. With 32-bit coefficients, we need to use
two 24-bit values to represent each coefficient, resulting in a single 6x2 multiply
that needs to be performed for each word.

Gladman’s C implementation of CWC-HASH uses floating point arithmetic,
but uses Horner’s rule instead of performing precomputation to achieve extra
speed. Nothing about the CWC hash indicates that it should run any worse than
half the speed of hash127, if implemented in a similar manner, in assembly, and
using the floating point registers and precomputation. This upper-bound paints
an encouraging picture for CWC performance, because hash127 on a Pentium

www.manaraa.com

III runs around 4 cpb when implemented in assembly and using the floating
point registers and precomputation. This indicates that a well-optimized software
version of CWC-HASH should run no slower than 8 cycles per byte on the same
machine.

Finally, it may be possible to further improve the performance of CWC-HASH.
For example, literature from the gaming community [11] indicates that one can
use both integer and floating point registers in parallel. Although we have not
tested this approach, it seems reasonable to conclude that one might be able to
interleave integer operations, and thereby obtain additional speedups.

7 Intellectual property statement

The authors hereby explicitly release any intellectual property rights to the CWC
mode into the public domain. The authors are not aware of any patent or patent
application anywhere in the world that cover this mode.

Acknowledgments

We thank Peter Gutmann, David McGrew, Fabian Monrose, Avi Rubin, Adam
Stubblefield, and David Wagner for their comments. Additionally, we thank
Brian Gladman for helping to validate our test vectors and for working with
us to obtain timing information. T. Kohno was supported by a National Defense
Science and Engineering Fellowship.

References

1. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In N. Koblitz, editor, CRYPTO ’96, volume 1109 of LNCS, pages
1–15. Springer-Verlag, Aug. 1996.

2. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of
symmetric encryption. In Proc. of the 38th FOCS, pages 394–403. IEEE Computer
Society Press, 1997.

3. M. Bellare, R. Guérin, and P. Rogaway. XOR MACs: New methods for message
authentication using finite pseudorandom functions. In D. Coppersmith, editor,
CRYPTO ’95, volume 963 of LNCS, pages 15–28. Springer-Verlag, Aug. 1995.

4. M. Bellare and C. Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In T. Okamoto, editor,
ASIACRYPT 2000, volume 1976 of LNCS, pages 531–545. Springer-Verlag, Dec.
2000.

5. M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. In W. Meier
and B. Roy, editors, FSE 2004, LNCS. Springer-Verlag, 2004.

6. D. Bernstein. Floating-point arithmetic and message authentication, 2000. Avail-
able at http://cr.yp.to/papers.html#hash127.

7. J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable
message authentication. In L. Knudsen, editor, EUROCRYPT 2002, volume 2332
of LNCS. Springer-Verlag, 2002.

www.manaraa.com

8. J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag, 2002.
9. B. Gladman. AES and combined encryption/authentication modes, 2003. Available

at http://fp.gladman.plus.com/AES/index.htm.
10. V. Gligor and P. Donescu. Fast encryption and authentication: XCBC encryption

and XECB authentication modes. In M. Matsui, editor, FSE 2001, LNCS. Spring-
er-Verlag, 2001.

11. C. Hecker. Perspective texture mapping, part V: It’s about time. Game Developer,
Apr. 1996. Available at http://www.d6.com/users/checker/pdfs/gdmtex5.pdf.

12. C. Jutla. Encryption modes with almost free message integrity. In B. Pfitzmann,
editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 529–544. Springer-Ver-
lag, May 2001.

13. J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes
of operation. In B. Schneier, editor, FSE 2000, volume 1978 of LNCS, pages 284–
299. Springer-Verlag, Apr. 2000.

14. T. Kohno, J. Viega, and D. Whiting. CWC: A high-performance conventional
authenticated encryption mode, 2003. Full version of this paper, available at http:

//eprint.iacr.org/2003/106/.
15. H. Krawczyk. The order of encryption and authentication for protecting commu-

nications (or: How secure is SSL?). In J. Kilian, editor, CRYPTO 2001, volume
2139 of LNCS, pages 310–331. Springer-Verlag, Aug. 2001.

16. H. Lipmaa. AES/Rijndael: speed, 2003. Available at http://www.tcs.hut.fi/

~helger/aes/rijndael.html.
17. M. Luby and C. Rackoff. How to construct pseudorandom permutations from

pseudorandom functions. SIAM J. Computation, 17(2), Apr. 1988.
18. D. McGrew. Integer counter mode, Oct. 2002. Available at http://www.ietf.

org/internet-drafts/draft-irtf-cfrg-icm-01.txt.
19. D. McGrew. The truncated multi-modular hash function (TMMH), ver-

sion two, Oct. 2002. Available at http://www.ietf.org/internet-drafts/

draft-irtf-cfrg-tmmh-00.txt.
20. D. McGrew. The universal security transform, Oct. 2002. Available at http:

//www.ietf.org/internet-drafts/draft-irtf-cfrg-ust-01.txt.
21. W. Nevelsteen and B. Preneel. In J. Stern, editor, EUROCRYPT ’99, volume 1592

of LNCS, pages 24–41. Springer-Verlag, 1999.
22. P. Rogaway. Authenticated encryption with associated data. In Proc. of the 9th

CCS, Nov. 2002.
23. P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of

operation for efficient authenticated encryption. In Proc. of the 8th CCS, pages
196–205. ACM Press, 2001.

24. P. Rogaway and D. Wagner. A critique of CCM, Apr. 2003. Available at http:

//eprint.iacr.org/2003/070/.
25. V. Shoup. On fast and provably secure message authentication based on universal

hashing. In N. Koblitz, editor, CRYPTO ’96, volume 1109 of LNCS, pages 313–328.
Springer-Verlag, Aug. 1996.

26. M. Wegman and L. Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences, 22:265–279, 1981.

27. D. Whiting, N. Ferguson, and R. Housley. Counter with CBC-MAC (CCM).
Submission to NIST. Available at http://csrc.nist.gov/CryptoToolkit/modes/
proposedmodes/, 2002.

